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Compact description is given of algebras of poly-numbers: quaternions, bi-quaternions,
double (split-complex) and dual numbers. All units of these (and exceptional) algebras
are shown to be represented by direct products of 2D vectors of a local basis defined on
a fundamental surface. In this math medium a series of equalities identical or similar
to known formulas of physical laws is discovered. In particular, a condition of the alge-
bras’ stability with respect to transformations of the 2D-basis turns out equivalent to
the spinor (Schrödinger–Pauli and Hamilton–Jacobi) equations of mechanics. It is also
demonstrated that isomorphism of SO(3, 1) and SO(3, C) groups leads to formulation
of a quaternion relativity theory predicting all effects of special relativity but simplify-
ing solutions of relativistic problems in non-inertial frames. Finely it is shown that the
Cauchy–Riemann type equations written for functions of quaternion variable repeat vac-
uum Maxwell equations of electrodynamics, while a quaternion space with non-metricity
comprises main relations of Yang–Mills field theory.
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“I think it is practically certain that there is no chance what-
ever for Quaternions as a practical system of mathematics for the
use of physicists. How is it possible, when it is so utterly discor-
dant with physical notions, besides being at variance with common
mathematics?”a

Oliver Heaviside

aHeaviside, O., “Electromagnetic theory”, L.: The Electrician, Co. Vol. III, p. 519 (1912).
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1. Introduction

The paper aims to offer in concentrated form results of the author’s more than
30-year examination of the mathematics of hypercomplex numbers and its hidden
links with formulations of physical laws. But it is necessary to emphasize that the
idea of the paper is alien to attempts to just methodically rewrite well-known for-
mulas in a new format; here we are committed to reveal and analyze objects and
equalities immanently resident in the hypercomplex medium, but as well met in the
precise or similar form of empiric and heuristic physical laws. The quaternion math
is distinguished in this sense; these numbers constitute last in dimension associative
but no more commutative division algebra. One discovers surprising similarity of
some of its correlations with a series of physical laws. A possible reason for this is
nearly incredible “geometricity” of quaternions. Thorough analysis shows that this
mathematics not only naturally incorporates habitual features of 3D-world, but
as well it seems to implicitly contain “more fundamental” pre-geometric structures
though admitting visual images thus making easier comprehension of most abstract
parts of physics, such as analytical and quantum mechanics. Moreover, the math-
ematical laws having clear geometrical sense give chance (of course with a certain
degree of success) to introduce corrections into formulations of physical relations,
and to construct respective models probably different from traditional ones.

The paper is organized as following. Section 2 is devoted to compact description
of sets of poly-numbers and hypercomplex numbers. In particular, in Sec. 2.1 main
relations of such associative algebras are given. In Sec. 2.2, a notion of fundamental
pre-geometric surface is introduced with a local 2D-basis (dyad) on it fully deter-
mining all units of the associative algebras. Section 2.3 is devoted to description of
3D differential geometry on quaternion spaces. In Sec. 3, identity or similarity of
the hypercomplex math relations with formulas describing physical laws are closely
regarded. In Sec. 3.1, it is shown that the demand of the algebras’ stability under
transformations of constituting them dyad vectors is equivalent (dependently on
the space-time scales) to equations of quantum or classical mechanics. In Sec. 3.2,
on the base of isomorphism of the Lorentz group and the group preserving quater-
nion multiplication a vector version of relativity theory is formulated, and a series
of relativistic problems is solved within its format. Section 3.3 demonstrates that
relations characteristic for the gauge fields, electromagnetic field and Yang–Mills
field, are discovered respectively in theory of function of quaternion variable, and
in differential geometry of quaternion spaces. Brief discussion in Sec. 4 concludes
the paper.

2. Math-Media of Hypercomplex Numbers

In this part, conceptions of hypercomplex numbers (and poly-numbers) are exposed
together with versions of their representations and appropriate relations. When
possible this data is related to geometric structures and objects associated with the
texture of physical world.
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2.1. Hypercomplex numbers

Real numbers are traditional (and justified) tool to describe results of physi-
cal experiments dealing with material objects and measurable magnitudes, while
complex numbers are used at “intermediate” levels of computation in physical the-
ories of twentieth century and actual today. Among them quantum mechanics,
classical theory of fermion fields, quantum electrodynamics etc.; a trend appears to
implement complex numbers even in classical theory of gravity.

Real and complex numbers have close algebraic properties, having though differ-
ent number of units. Respective geometric images exist, a continuous infinite line
for real numbers, and a surface, infinite or finite (Riemann sphere), for complex
numbers. But it will be shown below that a closer look at the units’ structure leads
to a novel image of the complex number in the form of “conic gearing couple”.

The term “hypercomplex” is attributed to numbers with more units than com-
plex numbers. Normally this term is used for numbers constituting two “good”
algebras, quaternions having four basic units, and octonions (Cayley algebra) hav-
ing eight basic units. Sometimes the “hypercomplex set” is said to include also
“poly-numbers”, double (split-complex) numbers and dual numbers based on two
different units, and bi-quaternions built on quaternion units but with complex-
numbered coefficients.

Four “good” algebras of real numbers, complex numbers, quaternions and octo-
nions are often called exceptional. The Frobenius–Gurwitz theorem proves that
these four types of numbers constitute full set of finite-dimensional division alge-
bras. But while algebra of quaternions (non-commutative ring) remains associative
in multiplication, algebra of octonions is neither commutative, nor associative, the
last property is replaced by a weakened version of “alternative multiplication” [1, 2].
No physical entities with non-associative multiplication are known, so octonions are
not considered in this work; the other numbers deserve attention.

2.1.1. Quaternion numbers and geometry

A quaternion is an object q = a1 + bi+ cj+ dk (Hamilton’s notation) with real
factors at one real (1) and three imaginary (i, j, k) units obeying the multiplication
law

12 = 1, i2 = j2 = k2 = −1, 1i = i1 = i, 1j = j1 = j, 1k = k1 = k,

ij = −ji = k, jk = −kj = i, ki = −ik = j
(1)

(symbol “1” normally omitted); the multiplication table (1) includes 16 postulated
equalities. Formulas are shorter in the vector notations i, j,k → q1,q2,q3 → qk,
j, k, l,m, n, . . . = 1, 2, 3; then a quaternion written as a sum of scalar (a) and vector
(bkqk) parts is q ≡ a+ bkqk, a, bk ∈ R, and the law (1) has the form

1qk = qk1 = qk, qkql = −δkl + εkljqj , (2)
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summation in repeated indices is implied, δkl, εjkl are respectively 3D symbols of
Kronecker and Levi-Civita (discriminant tensor).

Quaternions admit same operations as complex numbers. Comparison of quater-
nions is reduced to their equality (equality of coefficients at similar units). Commu-
tative addition of quaternions is made by components. Quaternions are multiplied
as polynomials by the rules (1) or (2); multiplication is non-commutative so left
and right products are defined.

A quaternion q = a+ bkqk has its conjugate q̄ ≡ a− bkqk, the norm |q|2 ≡ qq̄ =
q̄q (a real number), and the modulus |q| =

√
qq̄ =

√
a2 + bkbk. Inverse quaternion

is q−1 = q̄/|q|2, so for two quaternions q1 and q2 division (left and right) is defined
(q1/q2)right = q1q̄2/|q2|2, (q1/q2)left = q̄2q1/|q2|2. If q is a product of two multipliers
q1 = a+ bkqk, q2 = c+ dkqk then definition of the norm yields

|q|2 = |q1q2|2 = (q1q2)(q1q2) = q1q2q̄2q̄1 = q1q̄1q2q̄2 = |q1|2|q2|2, (3a)

in the developed form Eq. (3a) is the identity of four squares

(ac− b1d1 − b2d2 − b3d3)2 + (ad1 + cb1 + b2d3 − b3d2)2

+ (ad2 + cb2 + b3d1 − b1d3)2 + (ad3 + cb3 + b1d2 − b2d1)2

= (a2 + b21 + b22 + b23)(c
2 + d2

1 + d2
2 + d2

3). (3b)

“Identities of squares” exist only in four exceptional algebras: of real numbers (tri-
vial identity), of complex numbers (identity of two squares), of quaternions Eq. (3),
and of octonions (identity of eight squares).

Yet there is no satisfactory geometric image of all set of quaternions (like a plane
for complex numbers) but these numbers are “very geometric”. A quaternion with
unit modulus may be uniquely related to an arc of a sphere’s big circumference [3],
while a product of two vector quaternions a = akqk and b = bkqk

ab = akbnqkqn = −akbk + εknmakbnqm,

comprises at once the Cartesian scalar product of vectors-multipliers and their
vector product. This means that imaginary units behave as unit vectors initiating
a Cartesian system of coordinates, the coefficients being the vectors’ components.
This observation first made by Hamilton pushed Heaviside and Gibbs to develop a
simpler vector algebra.

The scalar unit here has no definite geometric image but it is distinct, so the
number of the algebra’s dimension (four) sometimes provokes 4D space-time asso-
ciations, though non-fruitful physically because the real unit (allegedly time “direc-
tion”) never changes. Instead another treatment of the scalar unit will be given
in demonstration that the hypercomplex numbers have powerful “pre-geometric”
foundation represented by a surface “underlying” the geometry of 3D space. The
analysis given below strongly supports the idea of interior structure of physical
world.
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2.1.2. “Bad ” poly-number algebras

Shortly expose three other associative algebras (having “disadvantages”), those of
double numbers, dual numbers, and bi-quaternions.

Double numbers. (Split-complex numbers, hyperbolic numbers, tessarines,
motors [4–6]) s=x + jy, where x, y ∈ R, similar to complex numbers are built
on two commuting units 1, j, but square of each unit is a real unity 12 = 1, j2 = 1.
These numbers admit addition, multiplication, and conjugation s∗ = x− jy same as
complex numbers. The “norm” ‖s‖2 = x2 − y2 sometimes is claimed to represent a
2D Minkowski metric subject to respective Lorentz transformation [7]. If ‖s‖ = 1,
then the Euler-type formula emerges ejη = cosh η + j sinh η, so that x = cosh η
where η is the hyperbolic parameter. But the number’s “modulus” apparently can
be an imaginary number or zero; this leads to defect of invertibility, hence of divi-
sion. Geometrically a double number can be represented as a vector on a surface
(plane). Two mutually conjugate vectors e = (1+j)/2, e∗ = (1−j)/2 are orthogonal
ee∗ = 0 and idempotent eN = e, e∗N = e∗ (N is a natural number); they form an
orthogonal basis for any set of dual numbers s = (x+ y)e+ (x− y)e∗. The number
s = x + jy can be represented in the simplest matrix form s =

(
x y
y x

)
, the matrix’

determinant giving the modulus ‖s‖ = det s. This matrix representation is not of
course unique (see Sec. 2.2).

Dual numbers. (Parabolic numbers [8–10]) d = x + εy, where x, y ∈ R, are
also built on two commuting units 1, ε, the first unit is a real scalar 12 = 1, the
second is a nilpotent ε2 = 0. Dual numbers admit addition, multiplication, and
conjugation d∗ =x−εy same as complex numbers. The norm of a dual number must
be square of its real part ‖d‖2 = d · d∗ = (x + εy)(x − εy) = x2, so the number’s
d = εy norm vanishes thus leading to the invertibility and division defects. But
dual numbers possess a valuable property: the nilpotent unit ε can play role of an
infinite parameter, so a function’s full Taylor series is given by just two terms. For
instance, a dual number with a unit norm (x = 1) is the full series of the exponent
eεy = 1+ εy representing a dual analog of Euler formula. The exponent of the type
eεt (t is a parameter) behaves as an operator of a “parabolic rotation” of any dual
number d = x + εy, result of the rotation is a translation eεtd = x + ε(y + xt)
sometimes associated with the Galilean group. The simplest (not unique) matrix
representations of dual numbers are d↑ =

(
x y
0 x

)
, or d↓ =

(
x 0
y x

)
.

Bi-quaternion numbers. [11–13] b = x + ykqk, where x, yk ∈ C, the units 1,qk

being those of quaternions, admit addition, multiplication, and conjugation b̄ =
x − ykqk same as quaternions. But the norm is not well-defined since the product
bb̄ = x2 + ykyk in general is not a real (positive) number. A real-number “norm” is
appropriate for the subset of vector bi-quaternions b = ykqk, yk = wk + izk with
orthogonal real and imaginary parts wkzk = 0, ‖b‖2 = bb̄ = wkwk − zkzk, there
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are evidently zero dividers, but it is this subset that comprises “best” formulas
describing relative motion of frames of Ref. [14]. Simplest representation of bi-
quaternions is given by the Pauli matrices pk : qk = −ipk

b =

(
x− iy1 −y3 − iy2

y3 − iy2 x+ iy1

)
.

It is straightforwardly shown that double and dual numbers are subsets of bi-
quaternions [15].

2.2. Pre-geometric basis of associative algebras

2.2.1. Units of associative algebras as functions of a dyad’s vectors

Let there exist a smooth 2D space (surface) endowed with a metric gAB (and
inverse: gBC → gABg

BC = δC
A) and with a system of coordinates xA = {x1, x2};

here A,B,C, . . . = 1, 2, δC
A is 2D Kronecker symbol, summation in repeated indices

is implied. A line element is

ds2 = gABdx
AdxB , (4)

the surface may be curved so the metric covariant and contravariant components
differ. In a point of the surface one can always choose a couple of unit orthogonal
vectors aA, bB (a dyad)

gABa
AaB = gABb

AbB = 1, (5)

gABa
AbB = aAbA = 0. (6)

A domain in vicinity of the dyad’s origin (together with respective part of tangent
plane having the metric δMN = δMN = δN

M ) will be called a “2D-cell”.
Consider direct (tensor) products of the dyad vectors with mixed components

[16]. One can construct only four such products (2 × 2-matrices), two idempotent
matrices

GA
B = aAaB, HA

B = bAbB → GA
BG

B
C = GA

C , HA
BH

B
C = HA

C (7a)

and two nilpotent matrices

DA
B = aAbB, FA

B = bAaB → DA
BD

B
C = 0, FA

BF
B
C = 0. (7b)

Now build sum and difference of the idempotent matrices

E ≡ EA
B ≡ GA

B +HA
B = aAaB + bAbB, E2 = E, (8a)

K̃ ≡ K̃A
B ≡ GA

B −HA
B = aAaB − bAbB, K̃2 = E (8b)

and sum and difference of the nilpotent matrices

Ĩ ≡ ĨA
B ≡ DA

B + FA
B = aAbB + bAaB, Ĩ2 = E, (8c)

J ≡ JA
B ≡ DA

B − FA
B = aAbB − bAaB, J2 = −E. (8d)

The set of objects (7) and (8) is sufficient to construct the basis of any algebra
described above. The unit E is the basis of real numbers; the couple E and J form
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the basis of complex numbers; the units E and D (or E and F ) form the basis of
dual numbers; the units E and Ĩ (or E and K̃) form the basis of double numbers.
Finely if units (8b) and (8c) are “slightly corrected” so that their product is the
third unit J , then one obtains the basis of quaternion (and bi-quaternion) numbers

1 ≡ E, q1 ≡ −iĨ, q2 ≡ J, q3 ≡ iK̃. (9)

Recall the spectral theorem (of the matrix theory) stating that any invertible
matrix with distinct eigenvalues can be represented as a sum of idempotent pro-
jectors with the eigenvalues as coefficients, the projectors being direct products of
vectors of a bi-orthogonal basis. The unit q3 defined in Eqs. (9) and (8b) is the
characteristic example

q3|AB = iaAaB − ibAbB = iGA
B − iHA

B , (10)

here right and left eigenfunctions of q3 are respectively vectors aA, bB and covectors
aA, bB of the dyad, the eigenvalues are +i (for a) and −i (for b), and GA

B, H
A
B are

the projectors.
On the other hand, the similarity transformation of the units (9)

q′
k ≡ ŜqkŜ

−1, (11)

preserves the form of multiplication law (2), and if det Ŝ = 1, then Ŝ ∈ SL(2,C), the
spinor group performing generalized rotations (reflections) of the vectors. There-
fore, vector units from Eq. (9) can be obtained from a single unit, say, q3 by a
transformation (11), so that all vector units have same eigenvalues ±i, and the
eigenfunctions of the derived units are linear combinations of the eigenfunctions of
the initial unit [17]. This also means that the mapping (11) is a secondary one,
but the primary ones are SL(2,C)-transformations of a dyad, the latter thus con-
sisting of a set of spinors (from viewpoint of the 3D space described by the triad
vectors qk).

Introduce a shorter 2D-index-free matrix notation for dyad spinor vector (a
vector is a column, a covector is a row); a parity indicator + or − marks sign of the
eigenvalue ±i

aA → ψ+, aA → ϕ+, bA → ψ−, bA → ϕ−. (12)

Now the dyad orthonormality conditions (5), (6) have the form

ϕ±ψ± = 1, ϕ∓ψ± = ϕ±ψ∓ = 0, (13)

the idempotent projectors are denoted as

C+ ≡ G = ψ+ϕ+, C− ≡ H = ψ−ϕ−

and the matrix units (9) are

1 = ψ+ϕ+ + ψ−ϕ−, (14a)

q1 = −i(ψ+ϕ− + ψ−ϕ−), (14b)

q2 = ψ+ϕ− − ψ−ϕ−, (14c)

q3 = i(ψ+ϕ+ − ψ−ϕ−). (14d)
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The transformation (11) clearly follows from the SL(2,C)-transformations of the
spinor vectors

ψ′± = Sψ±, ϕ′± = ϕ±S−1. (15)

Emphasize some primary results.

(1) Units of the considered above associative algebras are structured objects made
up of “more elementary” spinor vectors of a dyad chosen on a 2D-cell of a
fundamental surface; different 2D-cells provide different representations of the
algebraic units.

(2) New: the scalar unit has sense of a metric of 2D-cell.
(3) If a triad qk is an image of 3D space geometry, then the fundamental surface

(and its 2D-cell) should be associated with an image of pre-geometry (the term
suggested by Wheeler [18]), each pre-geometric dimension being a “square root”
from a 3D (physical) dimension.

(4) The 3D space can be regarded as a multitude of small 3D bits (“cubes”) each
erected on its own 2D-cell, while the fundamental surface composed of many
tightly gathered 2D-cells can be thought of as kind of a pre-geometric “world
screen”.

2.2.2. “Conic gearing” image of a complex number

Using Eqs. (14a), (14d) represent a complex number in the matrix form

z ≡ x+ yq3 = x(ψ+ϕ+ + ψ−ϕ−) + iy(ψ+ϕ+ − ψ−ϕ−) = reiβC+ + re−iβC−,

(16a)

where r =
√
x2 + y2, tanβ = y/x; imaginary unit here is q = q3 but it may be any

unit qk each admitting expansion (14d). The number z in the form (16a) unites a
scalar complex number and its conjugate, each component on a plane “oriented” by
projectors C+ and C−, so the planes are orthogonal. Radius r cuts a disk in each
plane; one disk rotated by angle β compels the second disk rotate by angle −β.
This fits to the model of “conic gearing couple” [19, 20] (Fig. 1) built of two equal
orthogonal gears touching each other in an edge-point rotating (without slipping)
on orthogonal shafts; the projectors C+, C− are visualized as two fluxes parallel
to the shafts. Somewhat different (but related) image of the complex number (16a)
is given by just the two shafts of the conic couple, each having the length r and
endowed with a flag (Penrose type flag [21]) indicating angle ±β between the radius
and its initial position.

A rotation of the conic couple can be related to the dyad phase transformation
(15)

ψ′± = e±iαψ±, ϕ′± = e∓iαϕ±, (16b)

“exteriorly” preserving vector q3′ = q3, two other vectors q1′ , q2′ rotated about
q3 by angle 2α. Equations (16b) imply that the dyad vectors may have real and

1450062-8

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 2

01
4.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 O

lg
a 

B
el

os
ko

ur
sk

ay
a 

on
 1

1/
07

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



June 27, 2014 14:52 WSPC/S0219-8878 IJGMMP-J043 1450062

Physical theories in hypercomplex geometric description

Fig. 1. Conic-gearing image of a complex number.

imaginary constituents

ψ′± = (cosα± i sinα)ψ±, (17)

so each 2D-cell has a real and an imaginary areas; the changing phase makes one
area to be “pumped over” into another. This “flickering” of 2D-cell is of course
unobservable, its 3D manifestation is the triad q′

k rotation by a doubled angle. But
pre-geometric peculiarities of a 2D-cell become “noticeable” mathematically when
its dyad vectors are subject to a distorsion.

2.2.3. Conformal stretching of a flickering 2D-cell and the algebras’ stability

Let the spinor vectors (16b) of a 2D-cell be subject to a conformal transformation

ψ′′± ≡ σψ′ = σe±iαψ±, ϕ′′± ≡ σϕ′ = σe∓iαϕ±, (18)

the scale factor is a real number σ ∈ R; σ �= 0, σ �= 1. Make a new notation

λ ≡ σeiα, (19)

then λ∗ = σe−iα, and ψ′′+ = λψ+, ψ′′− = λ∗ψ−; ϕ′′+ = λ∗ϕ+, ϕ′′− = λϕ−.
Vectors of new basis (18) are still orthogonal ϕ′′∓ψ′′± = 0, but not unit

ϕ′′±ψ′′± = λλ∗ = σ2, (20)

i.e. a metric defect arises cancelling the option (14) to build algebras units from
ϕ′′±, ψ′′±. However, a special condition can be introduced smoothing the defect
away.
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Let ξΛ(Λ = 1, 2, . . . ,M) be coordinates in an abstract space P , and θ a free
parameter (θ, ξΛ “physically” unitless). Let also λ(θ, ξΛ) be a compact function in
a volume VΛ of P so that

f ≡
∫

VΛ

λλ∗dVΛ = 1. (21)

Then the metric defect “is not seen” from P , and the algebras’ units can be built
from ϕ′′±, ψ′′±

I ′′ = f(ψ′′+ϕ′′+ + ψ′′−ϕ′′−) = I, q3′′ = if (ψ′′+ϕ′′+ − ψ′′−ϕ′′−) = q3, (22a)

q1′′ = −if (ψ′′+ϕ′′− + ψ′′−ϕ′′+) = (cos 2α)q1 + (sin 2α)q2. (22b)

However, the units (22) remain functions of θ; a condition of the units (or of the
algebras) stability in the sense of the parameter can be imposed

∂f/∂θ ≡ ∂θf = 0. (23)

Application of the Stokes theorem reduces Eq. (23) to the continuity-type equation

∂θ(λλ∗) + ∇Λ(λλ∗kΛ) = 0, (24)

where kΛ is a “2D-cell propagation vector” in the space, possibly given in various
ways. It will be shown below that Eqs. (24) and (21) are most closely related to
basic laws of physics.

2.3. Geometry of quaternion spaces

The Hamilton’s discovery that the units qk behave as a Cartesian frame was the
first “physical law” identified in the quaternion math. Later, for about 100 years,
examination of the frames and respective spaces was abandoned; however, the last
decades demonstrate increase of interest to the subject [22]. So a brief representation
of quaternion 3D geometric objects as a medium hiding more physical laws seems
useful.

2.3.1. Vector transformations of quaternion units

The SL(2,C) transformations (11) keeping the law (2) form-invariant have SO(3,C)
vectorial analog represented by orthogonal 3 × 3-matrices Ok′n operating on the
triads

qk′ ≡ Ok′nqn. (25)

If matrix parameters are real Ok′n ∈ SO(3,R), then Eq. (25) describes the triad’s
qk space rotation; imaginary parameters imply hyperbolic rotations (though qk′

still satisfy the law (2)). A rotation about one unit vector, e.g. about q3 by angle γ,
is a “simple rotation”, its matrix denoted as Ok′n → Oγ

3 (see e.g. Eq. (22), γ = 2α);
any matrix Ok′n is a product of simple rotations.
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Each vector-quaternion a ≡ akqk is form-invariant under SO(3,R) rotations

a = akqk = ak′qk′ , (26)

since ak = On′kan′ and On′kOn′m = δkm. For complex numbered SO(3,C)-
parameters the vector bi-quaternions of the type z = (ak + ibk)qk = a + ib are
regarded in physics, their “norm” being

zz̄ = (an + ibn)(an + ibn) = a2 − b2. (27)

Equation (27) demands that the vectors a and b be orthogonal

ak′bk′ = anOnk′bmOmk′ = δmnanbm = 0,

if e.g. q1 is aligned with b, then z = ib1q1 + a2q2 + a3q3. The bi-quaternion’s
form-invariance

z = ib1q1 + a2q2 + a3q3 = ib1′q1′ + a2′q2′ + a3′q3′ (28)

demands [23] that matrices Ok′n ∈ SO(3,C) be products of simple rotations per-
formed in any order, but the space rotations about “imaginary axes” (here Oγ

1 ),
hyperbolic rotations about “real axes” (here Oiη

2 or Oiχ
3 ), the set forming a subgroup

SO(1, 2) ⊂ SO(3,C). These objects will be shown to form the base of quaternion
version of relativity theory.

2.3.2. Differentiation of triads and quaternion spaces

If a triad’s vector qk is a smooth function of parameters Φξ then its differential
is expressed through proper connection ωξkn and vectors of the same triad [24]
(summation in ξ = 1, . . . , G)

dqk(Φ) = ωξknqndΦξ,

the connection antisymmetric in vector indices has 3G components. The triad’s
derivative is

∂

∂Φξ
qk(Φ) ≡ ∂ξqk(Φ) = ωξknqn. (29)

The proper connection ωξkn can be computed e.g. as a function of SO(3,C) matrices

ωξkm = ∂ξOkñOmñ, qk ≡ Okñqñ, qñ = const.

The transformational properties of ωξkn are straightforwardly established

qk = Okp′qp′ → ωξkn = Okp′Omn′ωξp′n′ +Omp′∂ξOkp′ , (30)

meaning that the connection is not a tensor.
Introduce a 3D vector quaternion space U3 such that each of its point marked

in (holonomic) coordinates ya is an origin of a triad qk, and the triad’s orientation
functions Φξ(ya) are given. In general, U3 can be curved but admitting in each its
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point a plane tangent space T (U3) whose coordinates xn are locally linked to ya

by Lame coefficients

dxk = gkady
a, gkag

A
n = δkn, gkag

b
k = δb

a.

Define in T (U3) parallel transport of a vector Bn

dpBn = −ΩjknBkdxj ,

where Ωjkn = Φjkn + ωjkn + σjkn is an affine connection comprising the stan-
dard Ricci rotation coefficients Φjkn = ga

n∇jgka, proper connection ωjkn, and
an arbitrary term σjkn. Respective covariant derivative is conventionally defined
as DjBn ≡ ∂jBn + BkΩjkn. Quaternion triads are not covariantly constant with
respect to the derivative Djqn = ∂jqn + qkΩjkn = qk(Φjkn + σjkn), so the sum
σ̂jkn ≡ Φjkn + σjkn represents total quaternion non-metricity compelling the triad
rotate in addition to rotation caused by its proper connection.

The standard analysis of the first Cartan’s structure equation on T (U3) gives
links between basic 1-forms, connection 1-forms, and torsion 2-forms of the space,
while the second structure equation yields components of the curvature tensor

Rkmij = ∂iΩjkm − ∂jΩikm + ΩjknΩinm − ΩiknΩjnm.

One finds that part of the tensor built of only proper connection ωjkn identically
vanishes, so nonzero part of the curvature Rkmij = ΦRkmij + QRkmij contains the
Ricci coefficients

ΦRkmij = D̂iΦjkm − D̂jΦikm + ΦjknΦinm − ΦiknΦjnm

and pure quaternion non-metricity
QRkmij = D̃iσjkm − D̃jσikm + σjknσinm − σiknσjnm (31)

(covariant derivatives in Eq. (31) with respect to the proper connection only).
The given above math information is sufficient to represent specific hypercom-

plex media where a band of physical laws dwells; they are examined in the next
section of this review.

3. Physical Laws in Hypercomplex Mathematics

It is demonstrated below that some equalities natural for mathematics of hyper-
complex numbers have format of physical laws or relations known from empirical or
heuristic considerations. Among these inequalities we shall meet equations of quan-
tum and classical mechanics, theory of relativity, equations of electrodynamics, and
those of Yang–Mills field.

3.1. Spinor equations of mechanics

This section is based on the introduced above notion of a 2D-cell of the fundamental
pre-geometric surface “underlying” the 3D world.
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3.1.1. Equation of quantum mechanics (Schrödinger equation)

The theory of quantum mechanics is based on the equation heuristically suggested
by Schrödinger in 1926; it fits well to results of experiments and now is considered
conventional. One easily finds that this equation is a special case of the algebras’
stability condition (24)

λ∗∂θλ+ λ∂θλ
∗ + ∂Λ(λλ∗kΛ) = 0. (32)

Let vector kΛ indicate direction of the phase increase kΛ = ∂Λα, the phase
function expressed from λ = σeiα as α = i

2 ln λ∗
λ . Then kΛ = i

2 (∂Λλ∗
λ∗ − ∂Λλ

λ ); insert
this into Eq. (32) and find after a simple algebra (with summation in Λ = 1, . . . ,M)

∂θλ− i

2
∂Λ∂Λλ+ iWλ+ e2α

(
∂θλ

∗ +
i

2
∂Λ∂Λλ

∗ − iWλ∗
)

= 0,

where a free term iλλ∗W is added and subtracted. If this equation holds for all
values of the phase then each of its conjugate parts vanish; equation for the function
λ(ξΛ, θ) is (

∂θ − i

2
∂Λ∂Λ + iW

)
λ = 0. (33)

If the abstract math space P is the 3D physical world then the unitless coordinates
become the space coordinates measured in units of length and the free parameter
becomes time

ξΛ → xk/ε, θ → t/τ. (34)

Choose the scale standards e.g. as

ε ≡ �

mu
, [ε] = cm; τ ≡ ε

u
=

�

mu2
, [τ ] = s, (35)

where � is the Planck constant, m is a characteristic mass, u is a certain velocity
(umax → c); then Eq. (33), with the substitutions (34), (35), becomes exactly the
Schrödinger equation (

i�∂t +
�2

2m
∂k∂k − U

)
λ(x, t) = 0, (36)

the free function U = mu2W acquiring sense of a potential. The functional (21) in
physical space ∫

VΛ

λλ∗dVΛ → 1
ε3

∫
V

σ2dV = 1, (37)

offers an original geometric and physical treatment of the “wave function” λ. “Pre-
geometrically” λ(x, t) = σ(x, t)eiα(x,t) describes a σ-times stretched 2D-cell flick-
ering in the complex plane with the phase α; the parameters now depend on the
space points and time. Function σ can be regarded as a “relative semi-density” of
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mass σ =
√
ρ(x, t)/ρmean, where ρ(x, t) is a local density, ρmean = const. is a mean

density over a 3D space volume V. Then Eq. (37) is definition of the mass∫
V

ρ(x, t)dV = ρmeanε
3 = m. (38)

From the large scale viewpoint, this is a compact mass (a material point) with
frozen-in triad rotated by angle 2α. This model helps to purposefully search for
solutions of Eq. (36).

3.1.2. Hydrogen atom: Schrödinger solution and Bohr model

The Schrödinger model of hydrogen-type atom (widely considered the single one
correct) emerges as an exact solution of Eq. (36) with the potential U ≡ −q2/r
of central electric charge. Only the phase depends on time in the model λ(r, t) ≡
σ(x)e−i Et

� , E = const., so it is classified as a stationary one. Here (for simplicity)
only circle “orbitals” are regarded, i.e. the scale factor is a function of radius σ =
σ(r), then Eq. (36) in spherical coordinates has the form

E +
�2

2m
1
rσ

d2

dr2
(rσ) +

q2

r
= 0. (39)

Solutions of Eq. (39) (in the variables r/a, E/E0, where a = �
2/(mq2), E0 =

mq4/(2�2)) are the Laguerre polynomials for the function σ/r and the energy levels
E = −E0/n

2.
“Pre-geometric” image of this model is a flickering (with frequency ωn = En/�)

2D-cell compactly stretched in the neighborhood of each discrete radial level. “Geo-
metrically” (in the physical space), this is a mass with a triad’s origin in its center
of symmetry, the triad rotating (with frequency 2ωn) about an arbitrarily pointed
vector q3. The mass is immobile in the space so the Schrödinger model is rather a
static than a stationary one.

However, Eq. (36) with the same potential admits another solution describing
steady motion of a mass (indeed stationary). For an orbiting electron one expects
a wave solution with a phase

α = kϕ− ωt, (40)

where k = const. is a wave number, ϕ is an azimuth angle of 3D spherical coordi-
nates, ω = const. is a frequency of 2D-cell’s harmonic flickering. The scale factor
can also depend on time and coordinates (angular and radial), e.g. in the following
combination of functions

σ = g(ϕ, t)f(r).

Then for circular orbits at polar angle π/2 Eq. (36) decays into the real and imag-
inary parts

ω� − k2�2

2mr2
+
q2

r
+

�2

2m

[
1
rf
∂r∂r(rf) +

1
gr2

∂ϕ∂ϕg

]
= 0, (41a)
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∂tg +
k�

mr2
∂ϕg = 0. (41b)

Variables in Eq. (41a) separate, the azimuthal equation ∂ϕ∂ϕg + µ2g = 0 (µ is a
real parameter) having the solution g = sin(µϕ + γ). The normalization condition∫ 2π

0 g2dϕ = 1 determines the amplitude value A = 1/
√
π and imposes restrictions

onto the parameter µ = n/2, n = 1, 2, 3, . . . .
The angular velocity of the orbiting electron Ω ≡ ϕ̇ = 2γ̇/n can be also expressed

through the 2D-cell flickering frequency Ω = 2ω/k, the two expressions compatible
if γ̇ = ω, k = n. So the azimuthal function is g(ϕ, t) = 1√

π
sin[n

2 (ϕ − Ωt)]; inserted
in Eq. (41b) it yields the expression

mΩnr
2
n = n�, (42)

well-known as formula of quantization of electron’s angular momentum postulated
by Bohr in his model of the hydrogen atom; here this formula appears as an exact
solution of the Schrödinger equation. The discrete energy En = ωn�, and momen-
tum pn ≡ mΩrn = n�/rn of an electron prompt to put Eq. (41a) into the different-
scale form

En − p2
n

2m
+
q2

rn
= 0 = − �

2

2m

[
1
rf
∂r∂r(rf) +

n2

4r2

]
. (43)

Left-hand side of (43) describes electron’s uniform circular motion in the central
Coulomb force, the equal Newton’s equation p2

n/(mrn) = q2/r2n giving the orbit’s
radius rn = an2 = �2n2/(mq2), the angular velocity of revolving Ωn = mq4/(n3�3),
the cyclic frequency of the 2D-cell’s flickering ωn = En/� = Ωn/n, i.e. all
magnitudes of the Bohr’s H-atom model. Right-hand side of (43) gives the ampli-
tude fn(r), its knowledge though being formal since the model does not imply radial
distribution of mass, the radius of each orbit fixed.

The picture of this solution drastically differs from that of the Schrödinger’s
one. “Pre-geometric” image of the Bohr-type model is a flickering (with frequency
ωn) and orbiting 2D-cell (propagating along the orbit as a wave with angular veloc-
ity Ωn); the 2D-cell is stretched by factor σn. Before normalization the solution
describes a harmonic distribution of the relative mass density σ2

n(ϕ, t) along the
orbit’s line, in fact a thin rotating ring with the number of density maximums equal
to the orbit’s number. After normalization (integration over the cyclic coordinate)
the Bohr’s point-mass electron is re-established, but now it carries a triad rotating
with the frequency 2ωn. The electron’s orbital velocities are un = Ωnrn = u1/n,
the basic velocity (at the 1st level) being u1 = Ω1r1 ∼= cα̃ suggested by Sommerfeld
[25], α̃ ∼= 1/137,036 is the fine structure constant. The characteristic length in this
case is radius of the first orbit ε = �/(mu) = r1.

3.1.3. Spinor equations of mechanics

Return back to Eq. (33) and recalling the shape of the function λ = σ(ξΛ, θ)eiα(ξΛ,θ)

separate the stability condition into real and imaginary parts (Bohm-type
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equations [26])

∂θσ + ∂Λσ∂Λα+
1
2
σ∂Λ∂Λα = 0, (44a)

∂θα+
1
2

(∂Λα) (∂Λα) +W − 1
2
∂Λ∂Λσ/σ = 0, (44b)

interpret each equation of the system. Equation (44a) is a continuity equation
for conformal factor σ, multiplied by 2σ it becomes the continuity equation for
density σ2

2σ∂θσ + 2σ∂Λσ∂Λα+ σ2∂Λ∂Λα = ∂θσ
2 + ∂Λ(σ2∂Λα) = 0.

Interpretation of Eq. (44) depends on the chosen scale. If its functions change
quickly then in physical units it is a part of Schrödinger equation just as (in special
case) Eq. (39). But the phase α may change slowly compared to the factor σ; then
the free function W in Eq. (44b) can be a sum W = Wext +Wint of “slow” (macro,
exterior) part Wext and of “fast” (micro, interior) part Wint. In this case, Eq. (44b)
decays into two independent parts

∂θα+
1
2
(∂Λα)(∂Λα)+Wext = 0, (45a)

∂Λ∂Λσ/σ = 2Wint. (45b)

First, analyze Eq. (45a); it evidently resembles the Hamilton–Jacobi equation
of analytical mechanics, the phase α playing role of the action function. Express
partial derivative through full derivative ∂θα = dθα − (dθξΛ)(∂Λα) and compute
the phase value on a segment [θ1, θ2]

α =
∫ θ2

θ1

[
dθξΛ∂Λα− 1

2
(∂Λα)(∂Λα) −Wext

]
dθ ≡

∫ θ2

θ1

L(dθξΛ, ξΛ)dθ, (46)

the integrand in Eq. (46) is a Lagrangian of “math classical mechanics”. Minimal
phase value on the segment found as vanishing variation δα = 0 entails the “math
equation of dynamics”

dθ

[
∂Kα+

∂(∂Λα)
∂(dθξK)

(dθξΛ − ∂Λα)
]

+ ∂KWext = 0, (47)

here ∂Kα ≡ PK is “momentum”, dθξK ≡ VK is “velocity”, −∂KW ≡ FK is “exte-
rior force”. In its turn Eq. (45b) determines the factor σ influenced by some inte-
rior agents represented by the “potential” Wint at this stage of analysis chosen
arbitrarily.
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Now define a function S ≡ �α and rewrite Eqs. (44a), (45) over space-time in
physical units (34), (35). Then Eq. (44a) (if σ =

√
ρ(x, t)/ρmean, Vm ≡ ∂mS/m) is

reduced to the mass conservation law

∂tρ+ ∂m(ρVm) = 0, (48a)

Eq. (45a) becomes the classical Hamilton–Jacobi equation for a massive point

∂tS +
1

2m
(∂mS)(∂mS) + Uext = 0, (48b)

while Eq. (45b) regulates distribution of the mass semi-density in a small domain

∂m∂mσ −Rintσ = 0, (48c)

where Rint ≡ (2m/�2)Uint is a free function measured in cm−2 (as e.g. curva-
ture tensor). In physical units the integrand of functional (46) takes the form of
mechanical Lagrangian, and Eq. (47) becomes precisely the equation of Newton’s
dynamics.

3.1.4. Free particle and De Broglie wave

If 3D particle is a compact mass with frozen-in vector triad rotating e.g. about q3

so that on a trajectory segment dz the particle’s velocity is V = V q3, then on the
mass-density border (of radius ε/2) a triad vector orthogonal to q3 (e.g. q1) depicts
a cylindric helix with the line element

dl2 = dz2 + (ε/2)2d(2α)2 = dz2 + ε2dα2. (49)

Equation (49) yields the change of respective 2D-cell’s flickering phase

dα = ±1
ε

√
dl2 − dz2. (50)

Demand that linear velocity of q1 on the border (scale velocity) be maximal u = c,
i.e. ε = �/(mc), then dl = cdt; in its turn dz = V dt; insert these expressions into
Eq. (50) to achieve

dα = ±mc
2dt

�

√
1 − V 2

c2
, (51)

the signs ± specifying right or left helicity. The phase value (in units of the Planck’s
constant) on a segment [t1, t2] is found by integration of Eq. (51). The integral taken
with the sign “minus”

α� = −mc2
∫ t2

t1

dt

√
1 − V 2

c2
≡ −mc

∫ t2

t1

ds ≡ S (52)

has the precise form of the action for a free relativistic particle (with left helicity).
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Consider a non-relativistic particle, V 
 c, then from Eq. (51) one finds

dS ∼= �dα = −mc2dt+
mV 2

2
dt. (53)

Here develop the full derivative, dα = ωdt + kndxn (ω ∼ const. (negative), kj →
kz ∼ const.), add and subtract the term (mV 2/2)dt, and replace V dt = dz, then
Eq. (53) takes the form

dS = ω�dt+ kz�dz = −
(
mc2 +

mV 2

2

)
dt+mV dz ≡ −Edt+ pzdz,

giving at once the particle’s classical and quantum energy and momentum

∂S

∂t
= −E = ω�,

∂S

∂z
= pz = kz� → ∂S

∂xn
= pn = kn�. (54a)

So the phase is α ∼ (pnxn − Et)/�, and the particle’s 2D-cell image is the De
Broglie wave

λ(xn, t) ∼ σ exp[i(pnxn − Et)/�]. (54b)

Thus Eqs. (54), previously heuristic quantum assumptions, here result from the
particle’s “helix model”, which in its turn appears on pure math grounds; main
points are listed below.

(1) The only assumption (that the bordering velocity of the triad rotation is that
of light) leads to Lagrangian of a free relativistic particle, and confirms that
the 2D-cell flickering phase is the mechanical action measured in units of the
Planck’s constant α = S/�.

(2) As well the phase α is proportional to a space-time line element “seen” in 3D
space as an arc of circumference depicted by a “transverse” triad’s vector in
the particle’s frame.

(3) For an immobile particle dα = ωdt, so ω� = mc2; hence the 2D-cell’s flickering
(or 3D particle’s rotation) must be permanent; for a moving particle ω� =
mc2

√
1 − V 2/c2 ≡ mV c

2.
(4) The 2D-cell’s function λ(xn, t) of a 3D free non-relativistic particle is the De

Broglie’s wave.

3.1.5. Derivation of Pauli equation

Equation (33) derived for the scalar λ is the simplest version of the stability con-
dition. But the dyad vectors are spinors (18), not scalars. Consider even spinors
(indicator+ is omitted) ψ′′ = λψ, ϕ′′ = λ∗ϕ; ψ, ϕ = const. Then the integral (21)
has the form

f(θ) ≡
∫

Vn

ϕ′′ψ′′dVn = 1 (55)
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(here λ(ξn, θ) is defined in 3D space). The spinor nature comes to play if a vector
field Ak(xn, t) is presently able to affect the 2D-cell’s propagation, e.g. as

kn = ∂nα+An. (56a)

In this case, the local 3D metric must be given in the Clifford formulation

δkn ≡ 1
2
(pkpn + pnpk) (56b)

(here Pauli-type matrices pk ≡ iqk are convenient to use). Equations (56) are taken
into account, the condition of the integral (55) conservation takes the form

∂θ(ϕλ∗λψ) +
1
2
(pmpn + pnpm)∂m[ϕλ∗λψ(∂nα+An)] = 0. (57)

After differentiations Eq. (57) becomes

(λ∗ϕ)
[(
∂θ − i

2
∂k∂k +

1
2
∂kAk +Ak∂k +

i

2
AkAk +

i

2
εkmjpj∂mAk + iW

)
(λψ)

]

+
[(
∂θ +

i

2
∂k∂k +

1
2
∂kAk +Ak∂k − i

2
AkAk +

i

2
εmkjpj∂mAk − iW

)
(λ∗ϕ)

]

× (λψ) = 0,

where the free term i(λ∗ϕ)×(1
2AkAk +W )×(λψ) is added and subtracted. The last

equation disintegrates into two conjugate equations. The equation for the spinor
vector is [

i∂θ − 1
2
(−i∂k +Ak)(−i∂k +Ak) − 1

2
pkBk −W

]
ψ′′ = 0, (58)

where Bk ≡ εkmn∂mAn. Hermitian conjugation of Eq. (58) gives similar equation
for the spinor covector. Transition to physical variables (34), (35) converts Eq. (58)
into the known Pauli equation[

i�∂t − 1
2m

(
−i�∂k +

q

c
Ãk

)(
−i�∂k +

q

c
Ãk

)
− q�

2mc
pkB̃k − U

]
Ψ = 0, (59)

where q is the electric charge, Ãk ≡ mc2

q Ak, B̃k ≡ mc2

q Bk are potential and inten-
sity of the magnetic field, and U ≡ mc2W is a scalar potential. Thus the Pauli
equation similar to that of Schrödinger’s can be derived just mathematically. One
may recall that the heuristic Pauli term q�

2mcpkB̃k was once theoretically deduced in
assumption that the electric charge interacts with micro-structure of a quaternion
space [27].

3.2. Quaternion theory of relativity

The multiplication law (2) for quaternion (and bi-quaternion) units is form-
invariant under SO(3,C) transformations of the units (see Eq. (25)), while
bi-quaternion vectors with definable “norm” (27) are form-invariant under
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SO(1, 2) ⊂ SO(3,C) transformations (see Eq. (28)). These facts together with
known isomorphism between SO(3,C) and the Lorentz group SO(1, 3) allow for-
mulation of the quaternion version of the relativity theory.

3.2.1. Vector interval, rotational equation, and effects of relativistic motion

Any quaternion triad qk is treated here as an observer’s frame of reference Σ.
Consider a form-invariant “physical” vector bi-quaternion with definable “norm”

ds ≡ idtq1 + drq2 = idt′q1′ + dr′q2′ , (60a)

where dr, dt being differentials of a particle’s coordinate and time observed from
the frame Σ ≡ qk; dr′, dt′ are similar parameters measured in the moving frame
Σ′ ≡ qk′ ; (c = 1). Equation (60a) holds under the transformation (rotational
equation)

Σ′ = OΣ, O ∈ SO(1, 2) (60b)

obviously keeping invariant the square of Eq. (60a), the scalar space-time line ele-
ment ds2 = dt2 − dr2 = dt′2 − dr′2. Equations (60) are the main equalities of the
quaternion relativity theory (“square root” from the special relativity). Since the
groups SO(1, 3) and SO(3,C) are 1 : 1 isomorphic, their matrix elements uniquely
expressed through each other [28], quaternion relativity must comprise all standard
relativistic effects. This is indeed the case.

Boost. Let Σ′ be a result of the simple hyperbolic rotation of Σ

Σ′ = Oiη
3 Σ, Oiη

3 =


 cosh η i sinh η 0
−i sinh η cosh η 0

0 0 1


,

then Eq. (60a) yields the standard boost transformations dr′ = dt sinh η+dr cosh η,
dt′ = dt cosh η + dr sinh η. If Σ′ is observed, then dr′ = 0, relative velocity is
u = dr/dt = tanh η.

Addition of velocities. Let frames Σ′ and Σ′′ move relatively to Σ so that the
angle between their velocities u1 = tanh η1, u2 = tanh η2, is β in the plane formed
by vectors (q2, q3) of Σ, while u1 ↑↑ q2. Then the rotational equations are Σ′ =
Oiη1

3 Σ, Σ′′ = Oiη2
3 Oβ

1 Σ; from this system one expresses Σ′′ as function of Σ′, Σ′′ =
Oiη2

3 Oβ
1O

−iη1
3 Σ′. Comparison of the first row of this matrix equation with Eq. (60a)

written in the form iq1′′ = cosh η(iq1′ + uyq2′ + uzq3′) (since dt′/dt′′ = cosh η)
yields the standard components and the norm of Σ′′ − Σ′ relative velocity

uy =
u1 − u2 cosβ
1 − u1 ·u2

, uz = −u2 sinβ
√

1 − u2
1

1 − u1 ·u2
, u2 =

(u1 − u2)2 − (u1 × u2)2

(1 − u1 ·u2)2
.

If the frames Σ′′ and Σ′ move oppositely (β = π) then these equations are reduced
to those of parallel motion u = (u1 + u2)/(1 + u1u2).
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Hyperbolic motion. Parameters of quaternion triads may depend on time, then
the frames are non-inertial. Let Σ′ move relatively to Σ (along q2) with acceleration
a′ = const.; the rotational equation is Σ′ = O

iη(t′)
3 Σ. For the case “Σ′ observed from

Σ” time derivative of Eq. (60a) gives the acceleration a′ = d2s/dt′2 = idq1′/dt′ =
η̇q2 = a′q2, hence the parameter function is η(t′) = a′t′ (no initial velocity). Then
from the ratio dt/dt′ = cosh η one finds Σ′ − Σ time dependence and all cinematic
characteristics: relative velocity, acceleration, and coordinate, all functions the same
as in special relativity [29]. But inverse problem (inertial frame Σ observed from
accelerated frame Σ′) is not considered in special relativity; though it is easily solved
in quaternion theory. The inverted rotational equation Σ = O

−iη(t′)
3 Σ′ (with the

same parameter η(t′) = a′t′) gives the ratio dt′/dt = cosh η, and the acceleration
a = d2s/dt2 = 0 expectedly vanishing. The cinematic characteristics of Σ observed
from Σ′ are then computed as

t(t′) =
1
a′

arcsin[tanh(a′t′)], u(t′) = tanh(a′t′),

r′(t′) =
1
a′

ln[cosh(a′t′)], a(t′) =
a′

cosh2(a′t′)
.

For small times the solutions become those of non-relativistic uniformly accelerated
rectilinear motion; but for Σ′-observer the Σ clock tends to stop at the time limit
tt′→∞ → πc/(2a′).

Thomas precession. Let a constantly oriented frame Σ be at the center of a circu-
lar orbit (of radius R) of a frame Σ′ oriented identically but orbiting with constant
velocity ωR; q1 is normal to the orbit’s plane. For Σ-observer q2′ apparently rotates
(Thomas precession [30]). In special relativity the effect is prolongly analyzed [31,
32]. In quaternion theory one just finds projection of q2′ onto q3 (initially q2′⊥q3)
from rotational equation Σ′ = O

−γ(t′)
1 Oiη

2 O
γ(t)
1 Σ where γ(t) = ωt, so that Oγ

1 makes
vector No. 2 of new frame chase Σ′; tanh η = ωR = const. so that Oiη

2 makes next
new frame relativistic; −γ(t′) = −ω′t′ so that O−γ(t′)

1 makes Σ′ constantly oriented.
The time-ratio t′ = t/coshψ leads to Σ′ −Σ angular velocity relation ω′ = ω cosh η
and to the sought-for projection (the last term in the second row of the rotational
equation) 〈q2′〉3 ∼= sin(ωT t) where ωT ≡ ω − ω′ = ω(1 − cosh η) = −ω

2 (ωR
c )2 is the

Thomas precession frequency. Note that quaternion relativity allows computation
of this effect on orbits of any shape from any frames (details in [23]).

3.2.2. New relativistic effects

Simplicity of the quaternion relativity algorithms prompts to search for new effects
and explanations of puzzling observations; few illustrative examples are below.

Relativistic oscillator. Let Σ′ move along q2′ under action of a harmonic
force, the proper acceleration (force per unit mass) being the function of Σ′ time
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a′ = (dη/dt′)q2′ = Ω′β cosΩ′t′q2′ , Ω′ is a proper frequency, β < 1 is a constant, so
the parameter is η(t′) = β sinΩ′t′. If Σ′ is observed from Σ the rotational equation
Σ′ = O

iη(t′)
3 Σ leads to Σ − Σ′ time interdependence t =

∫
cosh(β sin Ω′t′)dt′; since

β < 1 the integral is calculated exactly as a series [14]

t = t′ +
∞∑

n=1

β2n

(2n)!

[
1

22n

(
2n
n

)
t′ +

(−1)n

22n−1

n−1∑
k=0

(−1)k

(
2n
k

)
sin(2n− 2k)Ω′t′

(2n− 2k)Ω′

]
.

On the cycle Ω′T ′ = 2π one finds Σ − Σ′ period and frequency ratios

T = T ′
(

1 +
∞∑

n=1

β2n

(2n)!
1

22n

(
2n
n

))
, Ω = Ω′

(
1 +

∞∑
n=1

β2n

(2n)!
1

22n

(
2n
n

))−1

,

meaning that the oscillation seen from Σ is slower than in reality. Cinematic
functions of Σ′, velocity, acceleration and coordinate, are computed in approxi-
mation β 
 1 (while those of the inverse problem are exact functions of Σ′-time).
This solution provides good conditions for analysis of the famous “twin paradox”
if the cosmic trip is regarded as one oscillation of Σ′. Indeed, not only spatial posi-
tions of the twins coincide at the initial and final points, but there the twins are
mutually immobile, while the close-to-light speed is achieved gradually (details in
[23]). These conditions are not available in special relativity.

Relativistic shift of planets’ satellites and explanation of Phobos motion
peculiarities. Let a Solar system planet Σ′ have a satellite (on orbit of radius

R) observed from the Earth Σ; the rotational equation is Σ′ = O
i(arctanh V

c )
3 Σ,

the relative Σ′ − Σ velocity V =
√
V 2

E + V 2
P − 2VEVP cosΩt expressed through

respective (constant) velocities VP , VE and the difference Ω∼ const. between Σ
and Σ′ orbital angular velocities, c �= 1. Let dt′ → T ′ be a real period of the
satellite’s revolution (small compared to time of observation), dt → T being the
similar “period” observed from Σ. Then the standard time ratio is T ′ = T/cosh η =
T
√

1 − V 2(t)/c2, i.e. T > T ′, and the difference between the satellite’s real orbital
velocity V ′

S and observed velocity VS(t) is V ′
S −VS(t) = 2πR(1/T ′−1/T ) = V ′

S(A−
B cosΩt), A ≡ (V 2

P + V 2
E)/2c2 
 1, B ≡ VPVE/c

2 
 1. Time derivative gives
the satellite’s apparent acceleration a = V̇S(t) = −V ′

SΩB sinΩt, integration gives
its apparent position shift seen from the Earth ∆l ≡ ∫

(V ′
S − VS)dt = V ′

S(At −
B sin Ωt/Ω). Compute these values for Martian satellite Phobos [33] using the data
VE = 2.978× 106 cm s−1, mean orbital velocity of Mars is VP = 2.413× 106 cm s−1,
Earth–Mars angular velocity difference is Ω = 0.932 × 10−7 s−1, orbital velocity of
Phobos is V ′

S = 2.14 × 105 cms−1. Then the maximal seen accelerations of Phobos
are amax = ±1.59× 10−10 cm s−2 = ±4.84× 10−3 deg yr−2, the experimental values
[34–36] well inside the limits. Moreover, after ∼9 yr of the last Earth’s observation
of the satellite on orbit (in a perihelion opposition) a spacecraft will find Phobos
∼5 km ahead of its expected position, as actually happened [37, 38]. Similar effects
are expected to be discovered in fine observations of the Jovian satellites Metis
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and Adrastea, their visible acceleration estimated as aA ≤ 5.5× 10−3 deg yr−2, one
degree of an orbit being ∼4,000km.

Relativistic explanation of the Pioneer anomaly. The space probe Pioneer
10 (launched by the USA in 1972 and aimed to leave the Solar system) for more than
20 years was sending signals to the Earth’s observers who comparing the data with
the Doppler effect expectations discovered the probe’s nearly constant deceleration
aP = −(8± 3) · 10−8 sm · s−2 [39] (similar effect was noticed for Pioneer 11). Many
attempts were made to explain the effect by influence of new physical forces, but a
simple study [40] demonstrates probable relativistic nature of the anomaly. Let the
probe Σ′ (mass m) move rectilinearly with velocity u(t) aligned with vector q2 of
frame Σ of the Sun (mass M ). The rotational equation Σ′ = O−iη

3 Σ yields the time
ratio dt = dt′ cosh η, hence frequency f(t) of the signal received in Σ as function of
genuine frequency f ′ = const. of the probe f(t) = f ′√1 − (u/c)2 ∼= f ′(1−(u/c)2/2).
So due to the relativistic time contraction effect a relative difference between sent
and received signal frequencies emerges

∆f/f ′ =
f ′ − f

f ′ =
u2

2c2
= κ/c, (61)

here κ is the probe’s kinetic energy per mass. But experimentally received value
∆f/f ′ may be mistaken for presence of some additional speed uA responsible for
an extra Doppler effect

f =
f ′√

1 − (uA/c)2

(
1 − uA

c
cos γ

)
, (62)

here γ is an angle between the probe’s velocity and the signal’s wave vector (the
angle faintly affects the result, so will be ignored, γ = 0). Then Eq. (62) yields
uA

∼= c∆f/f ; comparing this with Eq. (61) one finds the apparent “additional
velocity”

uA
∼= κ/c. (63)

In Newtonian mechanics κ = E0/m + GM/r, (E0 is the probe’s mechanical
energy, G is the gravitational constant,r is Σ−Σ′ distance), so the probe’s apparent
deceleration is

aA ≡ u̇A = −uGM/(cr2).

In general relativity (Schwarzschild gravity) the deceleration is shown doubled [41]

aA = −2uGM/(cr2). (64)

Insert in Eq. (64) the values c = 2.99× 1010 cm · s−1, G = 6.67× 10−8 cm3 · g · s−2,
M = 1.99 × 1033 g, and the NASA data for Pioneer 10 (observed in 1983–1990)
u = (1, 52 − 1, 41)× 106 cm · s−1, r = (4.3 − 7.2)× 1014 cm [42] to find the deceler-
ation diapason aA = −(7.27− 2.61)× 10−8 cm · s−2 quite close to the experimental
values. But Eq. (64) states that the anomalous acceleration should not be constant,
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and recent analysis [43] of the observational data confirmed that the Pioneer 10
acceleration indeed decreases as ∆aP = −(0.25− 0.17)× 10−8 cm · s−2 · yr−1. Find
respective theoretical value. At the middle stage of observations the Σ−Σ′ distances
were [42] r1990 = 7.2 × 1014 cm, r1991 = 7.58 × 1014 cm, and Eq. (64) gives a year
drop of the acceleration ∆aA = 2uGM

A ( 1
r2
1991

− 1
r2
1990

) = −0.236 · 10−8 cm · s−2 · yr−1

in full agreement with experiment.

3.2.3. Dynamics in quaternion relativity

Thus quaternion relativity appears to be a good tool to deal with cinematic effects;
not worse it describes relativistic dynamics. But before turning to the dynamics,
picture of the quaternion universe model (not a 4D space-time) is to be commented.
Locally the quaternion universe consists of two 3D spaces (separated by the light
barrier), one is (the observer’s) real 3D space, the other is a 3D space imaginary
(for the observer) where a time direction is singled out [14, 23]; the time value is
found as ratio of the imaginary space length and the speed of light. This model
geometrically reflects the group’s SL(3,C) structure and helps to adopt imaginary
components arising in the (3+3)D dynamics.

The basic object of the dynamics is the momentum vector. Let two interacting
particles (rest masses M0 and m0) be attached to frames Σ, Σ′. If Σ′ is observed
from Σ then (c �= 1)

ds = icdt′q1′ = icdtq1 + drq2, (65)

q2 always parallel to relative velocity. Time derivatives of Eq. (65) (with factor
m0), the ratio dt = dt′ cosh η taken into account, give the remarkable equality

P′ = m0
ds
dt

dt

dt′
= m0 cosh η

ds
dt

= m
ds
dt

≡ P (66)

(m = m0 cosh η as in special relativity); i.e. the Σ′ momentum vector (66) (as
the interval (65)) is form-invariant under frames SO(1, 2) rotations; its components
found from Eqs. (65), (66) are

P′ = im0cq1′ , (67a)

P = m0 cosh η(icq1 + uq2). (67b)

Equations (67) allow formulation of the dynamic equation in Newtonian format in
Σ and Σ′ [44].

Σ′ is the base. Then ∂t′P′ = m0ic(Ω1′2′q2′ + Ω1′3′q3′) (Eq. (29) in the form
∂t′qk′ = Ωk′n′qn′ is used) the connection components being proper tangent Ω1′2′ =
−ia2′/c and normal Ω1′3′ = −ia3′/c accelerations of Σ′. Dynamic equation in this
case is just definition of the force F ′ = m0ak′qk′ or

∂t′P′ = F′. (68)

Equation (68) helps to solve inverse mechanical problems of finding the force if the
motion law is known.
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Σ is the base. Then

∂tP = m0[η̇ sinh η(icq1 + uq2)

+ cosh η(icΩ12q2 + icΩ13q3 + u̇q2 + uΩ21q1 + uΩ23q3)],

where Ω12 = −ia2/c, Ω13 = −ia3/c are proper tangent and normal accelerations of
Σ, Ω23 ≡ Ω is angular velocity of its rotation. The dynamic equation ∂tP = F has
the components

im
u

c
(cη̇ + a2) = iF 1, (69a)

m(cη̇ + a2) = F2, (69b)

m(uΩ + a3) = F3. (69c)

The system (69) has three specific features.

(1) The first component is in the imaginary 3D space. One may speculate that as
the tangent force F2 pushing the body changes the space scale, the force F1

similarly changes the time scale; anyway if F1 = (u/c)F2 then Eq. (69a) exactly
repeats Eq. (69b).

(2) Equations (69) are obviously relativistic comprising time derivative of the
hyperbolic parameter.

(3) The dynamics automatically takes into account proper accelerations of Σ, the
privilege of use of quaternion frames. For u/c 
 1 Eqs. (69) become those of
classical mechanics.

3.2.4. Accelerations and geometry

The rotational equation Σ′ = Oη
3Σ establishes the links ∂t′ = cosh η∂t, q1′ =

cosh ηq1 − i sinh ηq2, q2′ = i sinh ηq1 + cosh ηq2, q3′ = q3; inserted in Eq. (68)
they yield expressions of tangent and normal accelerations of Σ′ observed from Σ
through the frames proper accelerations

cη̇ = a2′ − a2, V Ω =
a3′

cosh η
− a3. (70)

Equations (70) have simple geometrical sense, they are a “physical equivalent”
of Eq. (30) stating that the quaternion connection is not a tensor with respect
to the frame’s transformations. For connection Ωkn this formula is rewritten as
Ωk′n′ = Ok′jOn′mΩjm + ∂tOk′jOn′j , tensor properties spoiled by the last term.
In this case of a simple rotation only two components differ from zero, Ω1′2′ =
Ω12 − iψ̇, Ω1′3′ = coshψΩ13 − i sinhψΩ23, insertion of them into the last equalities
gives precisely Eqs. (70). Thus Eqs. (68), (69) of relativistic dynamics reflect of
geometrical properties of the quaternion space.
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3.2.5. Two-body problem

Express the acceleration components from Eq. (70) (“seen” from Σ) through a force
a2′ = F ′

2/m, a2 = F2/M0, a3′ = F ′
3/m0, a3 = F3/M0, where F ′

k, Fk are components
of the same force acting onto Σ′ and Σ, tangent Σ′-acceleration depending on the
relativistic mass m = m0 cosh η of the observed frame Σ′, normal acceleration
depending on the rest mass; then Eqs. (70) become

c∂tη = F ′
2/m− F2/M0, V Ω = F ′

3/m− F3/M0. (71a)

The mechanical system is symmetric so similar equations can be written for Σ
observed from Σ′

c∂t′η = F2′/M − F ′
2′/m0, V Ω′ = F3′/M − F ′

3′/m0. (71b)

Equations (71) describe relativistic two-body dynamics; they can be used (in similar
methodics as equations of Newton dynamics) to search for approximate solutions
of problems including effects of interaction and signal retardations or of motions
when retardation parameters can be ignored (static or small gradients forces, small
Σ′ − Σ distances). The problem of a particle’s motion in field of a central force
produced by a great mass is an illustrative example [45]. In particular, the solution
states that a body rectilinearly moving off the Sun has a deceleration caused by the
Galaxy background gravity. If the Galaxy part (comprising the halo) is limited by
sphere of the Solar orbit radius R ∼ 2 × 1022 cm, then its roughly assessed mass is
MS ∼ 1045 g [46], and the “Galactic caused deceleration” value of the space probe
Pioneer 10 (in 1983) is aG

∼= −0.44 × 10−8 cm · s−2, thus noticeably incorporating
to the observed Pioneer anomaly.

Finishing the chapter one has to add that the quaternion relativity basically
exploiting 3D vector triads surely deserves reformulation in terms of 2D-cell spinor
vectors of the fundamental surface underlying the 3D physical world.

3.3. Gauge fields in quaternion math

It is shown below how electromagnetic field equations and hypothetical Yang–Mills
field are recognized among quaternion math equalities.

3.3.1. Electromagnetic field as Cauchy–Riemann type equations

Many ways to expose the theory of electromagnetic field are known. Maxwell, the
theory author, formulated his equations using freshly discovered quaternions. Later
vector version of the equations became conventional as well as 4D tensor vari-
ant admitting also a formulation by differential forms. Moreover, the electromag-
netic field arises as a gauge field in other fields’ variational procedures or otherwise
Maxwell equations appear in 5D curved space of Kaluza theory. However, these
technologies do not deepen insight into the math sense of physical laws.

Following Maxwell turn back to quaternions to find that the theory of functions
of quaternion variable naturally comprises an exact analog of the electrodynamic
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equations [47, 48]. Let G = G0(y) +Gn(y)qn be a continuous and smooth function
of the argument y ≡ y0 − ykqk (all units constant), so that its derivative (e.g. left)
can be defined

�dyG ≡ ∂G

∂y0
+ qn

∂G

∂yn
. (72)

To eliminate the ambiguity of the derivative (similar to that of a function of complex
variable) a Cauchy–Riemann type condition is suggested �dȳG = 0 the derivative
taken with respect to the conjugate quaternion variable ȳ ≡ y0 +ykqk, or explicitly

�dȳG =
∂G

∂y0
− qn

∂G

∂yn
= 0. (73)

In the “physical case” G(y) → A(u) ≡ iϕ+ Akqk, y → u ≡ −ict− xkqk, with
ϕ, Ak being potentials, xk, t being space-time coordinates, the differential operator
and its conjugate are

du ≡ i

c

∂

∂t
+ qn

∂

∂xn
, dū ≡ i

c

∂

∂t
− qn

∂

∂xn

and the derivative of A(u) is

�duA ≡ F (u) = −∂tϕ/c− ∂nAn + qn(i∂tAn/c+ i∂nϕ+ εjmn∂jAm). (74)

With the Lorentz gauge ∂tϕ/c+ ∂nAn = 0 and the notations En ≡ −∂tAn/c−∂nϕ,
Hn ≡ εjmn∂jAm Eq. (74) defines the field intensity vector quaternion F (u) =
(Hn − iEn)qn. It is a differentiable function if Eq. (73) holds

�dūF = i∂nEn − ∂nHn − qk

[
i

(
1
c
Ḣk + εmnk∂mEn

)
+

1
c
Ėk − εmnk∂mHn

]
= 0,

(75a)

separating in Eq. (75a) scalar, vector, real, and imaginary parts

∂nEn = 0, ∂tEn/c− εjmn∂jHm = 0, ∂nHn = 0, ∂tḢn/c+ εjmn∂jEm = 0,

(75b)

one gets precisely Maxwell vacuum equations, thus a pure mathematical issue. In
Eqs. (75) time is linked with a scalar unit, so Eqs. (75b) are SO(1, 3) covariant, while
Eqs. (75a) are not SO(3,C) form-invariant under transformations of quaternion
units, so they are not coherent with the quaternion relativity. This fact nonetheless
just underlines the difference between approaches to measure time by a cycle-process
clock or by a geometric clock (distances per speed of light).

3.3.2. Yang–Mills field as curvature of a quaternion space

The Yang–Mills field arises in the localization procedure of spinor field transfor-
mations [49, 50] ψ → U(yβ)ψ, yβ being 4D space-time coordinates. If a partial
derivative of ψ in respective Lagrangian is substituted by the covariant one
∂β → Dβ ≡ ∂β − Aβ {where Aβ ≡ iACβTC , TC are traceless matrices (a Lie
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group generators) commuting as [TB,TC ] = ifBCDTD with structure constants
fBCD}, then the matrix of the transformation is constant

DβU ≡ (∂β −Aβ)U = 0 (76)

and the Lagrangian including the term LYM ∼ FαβFαβ is invariant, Fαβ ≡
FCαβTC . The gauge field with intensity Fµν

B is expressed through the potentials
ABµ and the structure constants FCαβ = ∂αACβ − ∂βACα + fCDEADαAEβ . Vari-
ation of action with the Lagrangian LYM yields the vacuum Yang–Mills equations

∂αF
αβ + [Aα, F

αβ ] = 0. (77)

In particular, the group generators can be represented as iTB → qn = −iσn, σn

being Pauli matrices, then fBCD → εknm, and the potential and intensity are

Aβ =
1
2
Anβqn, (78)

Fkαβ = ∂αAkβ − ∂βAkα + εkmnAmαAnβ . (79)

But the quaternion format (78) of the Yang–Mills field hardly helps to judge of
its alliance with geometry of the hypercomplex math; one can only assume that
quaternion spaces contain the field’s geometric analog.

Test the assumption considering a 4D space-time with 3D quaternion space
section represented by a triad qk with the proper connection ωαmk �= 0, so that the
covariant derivative vanishes

Dαqk ≡ (δmk∂α + ωαmk)qm = 0. (80)

Let the triad qk be a result of the transformation qk = S(y)qk̃S
−1(y), qk̃ = const.,

S(y) is a variable matrix of the spinor group, then Eq. (80) gives

∂αSqk̃S
−1 + Sqk̃∂αS

−1 = ωαknSqñS
−1,

multiplication (from the left) by the combination qk̃S leads to the equality

qk̃S∂αS
−1qk̃S − 3∂αS = ωαknqñqk̃S. (81)

Computation of the first term, product of five non-commutative multipliers, results
in remarkably simple expression qk̃S∂αS

−1qk̃S = −∂αS, while the right-hand side
is ωαknqk̃qñS = 1

2εknjωαknqj . With the notation

Aα ≡ 1
2
Ajαqj̃ =

1
4
εknjωαknqj̃ , (82)

Eq. (81) takes the form

DαS ≡ (∂α −Aα)S = 0,

the same as Eq. (76) but obtained in the way alien to “physical” variational proce-
dures. It is the form-invariance of quaternion multiplication that provides covariant
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constancy of matrices of the units transformations, and it is the proper connec-
tion that is here associated with the Yang–Mills field potential, respective algebraic
equality following from Eq. (82)

ωαkn = εmknAmα. (83)

The Yang–Mills intensity tensor (79) built out of the “potential” (83) (i.e. intensity
contracted with the discriminant tensor, and denoted Rmnαβ)

Rmnαβ ≡ εkmnFkαβ = ∂αωβmn − ∂βωαmn + ωαnkωβkm − ωβnkωαkm, (84)

is straightforwardly identified with the curvature tensor of the quaternion space.
But one easily checks up that the curvature (84) is the result of alternation of
double partial derivatives of a variable triad’s vector, thus being a zero identity. So
in a space with proper connection the “Yang–Mills field” has nonzero potential but
vanishing intensity.

Consider a quaternion space of general type comprising apart from proper con-
nection ωαmk also non-metricity σ̂αmk which forces a triad rotate disregarding its
coordinate dependence

Ωαkn(y) = ωαkn + σ̂αkn,

in this case, the triad’s covariant derivative does not vanish

D̂αqk ≡ (δmk∂α + Ωαmk)qm = σ̂αmkqk.

Alternation of double covariant derivatives of a vector determines the curvature
tensor

R̂knαβ = ∂αΩβkn − ∂βΩαkn + ΩαkmΩβmn − ΩαnmΩβmk. (85)

Define the following contractions with the discriminant tensor

F̂mαβ ≡ 1
2
εknmR̂knαβ , Âα ≡ 1

2
Ânαqñ ≡ 1

4
εknmR̂knαβqñ, (86)

with these notations Eq. (86) takes the form

F̂mαβ = ∂αÂmβ − ∂βÂmα + εknmÂkαÂnβ , (87)

expectedly repeating the definition of the Yang–Mills field intensity (79), in this case
not zero. If the non-metricity components are just Ricci coefficients Φjkn emerging
e.g. in Riemannian spaces (see Sec. 2.3.2), then the field (87) has to do with an
“additional gravity” since the Lagrangian LYM ∼ F̂αβ

k F̂kαβ ∼ R̂αβ
mnR̂mnαβ is used

in generalizations of the Einstein’s theory of gravitation. If the space has only pure
quaternion non-metricity σjkn, analog of Cartan’s torsion, then the field (86) is an
independent physical entity. Of course, mixture of the two types of non-metricity is
feasible. The geometric liaisons (84)–(86) prompt to seek for the Yang–Mills-type
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equations among equalities inherent in quaternion spaces. In particular, the Bianchi
identity

∂[γR̂knαβ] + R̂mn[αβΩγ]km + R̂km[αβΩγ]nm = 0, (88)

contracted in k, α and n, γ is known to express the Einstein’s tensor conservation
(only Greek indices are antisymmetrized by square brackets). Instead, perform the
first contraction of Eq. (88) with the discriminant tensor replacing curvatures by
the intensity from Eq. (86)

1
2
εknl(∂[γR̂knαβ] + R̂mn[αβΩγ]km + R̂km[αβΩγ]nm)

= ∂[γF̂lαβ] + 2εknlF̂k[αβÂnγ] = 0

and the second contraction in the indices α, γ (also raising free coordinate index)

∂αF̂
αβ
j + 2εjknF̂

αβ
k Ânα + ∂αF̂

βα
j + 2εjknF̂

βα
k Ânα = 0. (89)

Of course Eq. (89) remains an identity due to the antisymmetry F̂αβ
j = −F̂ βα

j .
But one notes that the Yang–Mills equation (77) written in the vector quaternion
components as

∂αF
αβ
j qj + Fαβ

[k An]αqkqn = 0 → ∂αF
αβ
j + 2εjknF

αβ
k Anα = 0,

is precisely equivalent to any “vanishing half” (first two or last two terms) of the
identity (89). So the field equation of this gauge field is in a way present in the
quaternion geometry. Moreover, the algebra’s SL(2,C)-form-invariance makes plau-
sible a “Yang–Mills field” with complex-numbered components, the theory deserv-
ing a special study.

4. Conclusion

The above review demonstrates that a good number of formulas of famous physical
laws can be discovered in the “hypercomplex math-media”, among them physical
equations originated on the basis of experimental observations (classical mechan-
ics, electrodynamics) or those emerging in a “flash of genius” (theory of relativity,
quantum mechanics, Yang–Mills theory). Not all hypercomplex equations precisely
coincide with formulas of the conventional laws, e.g. the purely mathematical ver-
sion of Hamilton–Jacobi equation contains a non-characteristic additional micro-
interaction term, while the universe of quaternion relativity predicting same effects
as the Einstein’s theory turns out to have six dimensions instead of four. But these
“corrections” originated in mathematics perhaps do not “spoil the picture”, vice
versa, may be they make it more accurate improving the points missed in empiric or
heuristic versions. Of course only future experiments confirm or reject the assump-
tion. As to the theory of gravitation not included in the above study, there are few
doubts that it can be formulated in a curved quaternion space as one of alternative
theories of gravity (for recent review, see [51]).
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But there is the most essential feature of “reflection of physics” in the hypercom-
plex numbers math, the opportunity to regard physical entities from the viewpoint
of the “pre-geometric” fundamental surface. This approach represents a helpful
base for derivation of the “principle” spinor equations of quantum and classical
mechanics, and it immanently unites all examples and facts given above. Up to the
author’s knowledge no systematic analysis based on the “pre-geometric immersion”
of physical laws has been ever undertaken, but it seems to be of a certain interest
and may turn out fruitful.
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